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COMMENT 

Percolation thresholds on finitely ramified fractals 
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Abstract. Exact renormalisation group recursion relations are used to estimate the effective 
percolation thresholds for site and bond percolation on finite-generation Sierpinski gaskets, 
and for bond percolation on branching Koch curves. 

The Sierpinski gasket ( S G )  is a prototype of a finitely ramified fractal [ l ]  which often 
served as a theoretical 'laboratory' for concepts related to fractals. In particular, Gefen 
et a1 [ 11 were the first to treat percolation on a S G ,  using an approximate renormalisation 
group (RG) recursion relation. They found that p c =  1,  a result which is intuitively 
plausible given the low connectedness of the SG. More precisely, let us look at 
finite-generation approximations of a SG,  and let us call R,  the probability that on an 
nth generation SG all corners are connected. We then define an effective threshold 
pi."' by requiring R,( p = pi."') = c, with 0 < c < 1.  In [ 13 it was found for bond percola- 
tion that 

pi."'= 1 - 1 / 2 J n  for n + CO. ( 1 )  
The site percolation problem has been studied more recently by Yu and Yao [2], who 
found pz."' = 1 - 1/ n by means of heuristic arguments and numerical simulations. 
Related to these problems are other transport problems on the SG, treated in [3-61. 

It is the purpose of this comment to point out that for percolation on a SG one can 
give the exact RG recursion relations, similar to those given in [3]  for the problem of 
Joule heat distribution on a SG,  and in [ 5 , 6 ]  for self-avoiding walks and trails. 

In addition to the probability R,  for percolation from any corner to both others, 
we need the probability for percolation between two corners, but not between them 
and the third. We call this S, .  Obviously, 1 - R,  - 3 S ,  is the probability that there is 
no percolation between any pair of corners. Graphically, we represent R,  and S,  as 
shown in figure 1.  

C C 

Figure 1. Probabilities for a finite-generation Sierpinski gasket to percolate: ( a )  from any 
corner to any other corners; ( b )  from corner A to corner B, but not to corner C. 
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For bond percolation, the RG recursion for R ,  is shown graphically in figure 2. 
Together with the somewhat more complicated recursion for S,, we then obtain the 
exact relations 

R,+l  = R ~ + 6 R ~ S n + 3 R , S ~  

S,, = ( R ,  + S, )' - 4RZ, S, + S', - R i .  
( 2 )  

We make now an ansatz 

~ , = i + a / ~ + o ( ~ - ~ )  

S, = p /  n + y / n 2 +  o ( n - 7  
( 3 )  

with open parameters a, p and y. Notice that no term - l / n 2  appears in the ansatz 
for R, ,  as such a term can always be absorbed in the term - l / n  by a translation 
n + n +constant. The recursion relations give the unique solution 

( 4 )  
In order to have non-negative probabilities, we can use this solution only for n < O .  
Level n = 0 corresponds to the outer length scale. Assume now that the recursions (2) 
hold only for n > - N ,  i.e. level n = - N  corresponds to the inner length scale. At this 
scale, we have a simple triangle with bond probability p ,  i.e. 

p = -I = -1 
16. cy = a  

R-N = p 3 + 3 p 2 ( l - p )  

S-N = p ( l  - p ) ' .  

Comparing ( 3 )  and ( 5 )  gives then in agreement with [ l ]  

paN) = 1 - 1 / 2 J N  + O( N - ' )  (bond percolation). ( 6 )  
This result is supported by numerical simulations which were performed using a 
technique described in detail in [ 4 ] .  The effective percolation threshold was determined 
according to the condition R,( p = pf"') = 0.95, where the constant c = 0.95 was chosen 
arbitrarily. 

+ permutations 
Figure 2. Recursion relation for R, , ,  the probability to percolate from any corner to any 
other. 

Figure 3. Recursion relation defining a branching Koch curve. 
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For site percolation, the recursion relations are somewhat more complicated. A 
straightforward analysis gives 

R,,l = R3,p3+3Rnp2( (  1 - p ) R ’ ,  + 2RnSn + S’,)  
( 7 )  

We were not able to solve this analytically as in the bond percolation case. It is 
however trivial to iterate ( 7 )  numerically, with the initial values for R and S given by 
(5). From such iterations, we found 

S n t ,  =p[ (Sn+Rn)2+pS3,  -p(3+p)RZ,S,  -p(2-p)R3,1. 

p:”Zl-O.S/N (site percolation) (8) 
which agrees qualitatively but not quantitatively with the result of [2]. We might add 
that we also performed numerical iterations on (2),  thereby verifying (3)-(6). 

Finally, we should mention that similar (and indeed simpler) exact recursion 
relations can be given for many other fractals, including in particular branching Koch 
curves [ 7 ] .  In the latter case, one finds in general an exponential convergence of p c  
towards 1. For instance, for bond percolation on the branching Koch curve shown in 
figure 3 we get a RG relation for the probability R,  of percolation 

R , + i = R i ( 1 - R n )  ( 9 )  

from which we obtain p i N )  = 1 - ~ o n s t a n t / 2 ~ .  Again, this result is found to be in perfect 
agreement with numerical simulations. 
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